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I Introduction

Polynomial interpolation is an important tool in approximating functions. The optimal
interpolation in an interval was under much study and was resolved with the proof of the
Erdos-Bernstein conjecture [4] [5]. However, few attempts have been made to address the
optimal polynomial interpolation in the triangle and in the tetrahedron. In [2] [3], we have
computed the positions of the mean optimal interpolation sets in the triangle and in the
tetrahedron. The mean optimal sets are close to optimal in the uniform norm and are shown
to have the smallest Lebesgue constants among currently known interpolation sets. They
perform well in many applications. They have been successfully used in the p-version of the
Finite Element Method.

In this paper, we consider the problem of approximating function in a general domain
in one and two dimensions using polynomial interpolation. We assume that the domain
is partitioned into standard subdomains, i.e., into intervals and triangles. In each subdo-
main, we approximate the function using the polynomial interpolation points given in [2].
In a partitioned domain, interpolation using the same polynomial degree in every standard
subdomain leads to continuous piecewise polynomial. Nevertheless, uniform distribution of
degree is usually not economical. In addition, in boundary value problems, small polynomial
degree is desired in approximating the essential boundary condition for an efficient imple-
mentation of the Finite Element Method. We address the question of how to determine the
optimal degree of polynomial interpolation in each subdomain to yield the most efficient
approximation.

In section 2, we review the theory of polynomial interpolation and summarize the main
results in [2] and [3]. In section 3, we introduce an effective error estimator and present an
adaptive procedure for determining the polynomial interpolation degree in each subdomain
in R! and R?. We present an algorithm to ensure the continuity of the interpolated piecewise
polynomial for a nonuniform distribution of degree.

IT On Interpolation

2.1 Interpolation in an interval

Let I = (—1,1) and C(T) be the space of continuous functions. Let C(T) be equipped with the
norm || f|jeo = max,.7 |f(t)|. Further let P, C C(I) be the set of polynomials of degree n. Let
T = (18,7, ..., ") with =1 = 7§ < 70 < ... < 7} = 1. Then by L7~ we denote the mapping
C(I) = Pu: pn = L~ f such that p,(T", f,t) € P, and p,(T", f,7}) = f(77),5 = 1,...,n.
Obviously p,(T™, f) is uniquely determined and L= is a projection. Denote now

L1 Floo
AT) = ||l = sup#o%—- 2.1)
Let . . .
LTt = [] (—L),k=0,..,n (2.2)
i=0#k Tk T Tj




be the Lagrange Polynomials associated with the set T™. It is easy to show that

AT) = | z L ()] (2.3)
In addition, we introduce
Kerd oo = ([ S LT 1)) (2.4
T k=0

Let f € C(I) be given and let p,(f,t) € P, be arbitrary, then

If = Lrflleo < 1+ AT = Dl

(2.5) shows that the interpolation error is up to a constant (1 4+ A(7™)) the same as the
error of the best approximation and hence small A(T™) is desirable. Further (2.5) also shows
that the roundoff error 8 (or error of any other kind) in f(7}') leads to the increase of the
interpolation error at most by A(T")f. This observation will be used in section 3.

Remark. Although (2.5) is only an upper estimate, it can be shown that if A(T™) rapidly
grows as n — 00, the interpolation can diverge.

Our aim in [2] [3] was to determine the optimal points T, which leads to the best
interpolation. Of course the term “best” has to be defined. For survey of the literature, we
refer to [2] [6] [7] [9]. For the purpose of this paper, we say that 7™ is optimal if A(T™) is
minimal. More precisely, we denote by T}, such that A, = A(T7,,) = inf A(T™), where inf is
taken over all interpolations 7". It can be shown that the set T, exists and its characteristic
properties are known as the Erdos-Bernstein conjecture. The conjecture is proved in [4] [5]
The points Ty, and A, can be computed numerically. For more details, see [2].

Although we have addressed above only one dimensional case, (2.1) (2.2) (2.5) hold
in 2 and 3 dimensions too(with obvious modifications to the definition of the Lagrange
polynomials (2.2) and the integral in (2.4)).

Given T7" and T3, we say T7 is worse than Ty if A(T*) > AT3'). T} is close to Ty if
ATT) = A(T%). This comparison criterion between two sets T™ is useful because A(T™) can
be easily computed. In contrast the optimal set T, is very hard to find especially in 2 and
3 dimensions. No algorithm for locating 77, is known in 2 and 3 dimensions. Hence in the
literature, various approaches to find approximate optimal sets were proposed and studied
(see e.g., [2]). The above criterion gives a characteristic way for selecting the best known set.

If we minimize (2.4) instead of (2.3), we get the mean optimal set T;,. T(j is much
easier to compute numerically. In [2] [3] we have shown thatT(;, in 2 and 3 dimensions is
better than any proposed sets thus far in the literature. In one dimension, T, and A, are
known, we can compare A(T{},) with A, or with the Lebesgue constant of any other set. 17,
in fact is quite close to Ty, In the sense that A(T{},) is close to A,.

Remark. We defined here only the set T(7,). Other expressions can be used in the
minimization procedure to construct optimal sets. For some of the computed optimal sets,
see e.g., [2]). However, (c) appears to be the easiest to compute among proposed optimal

sets.

(2.5)

00




Table 2.1: The Lebesgue constant and coordinates of the optimal set and the mean optimal
set in the interval. Since both sets are symmetrical, only interior positive coordinates are

listed.

MTop)

AMTy) — MT5,

)

T’n

opt

Ty

[ I N JUY

10

11

12

13

1.42291957
1.55949021
1.67221037

1.76813458

1.85159939

1.92545762

1.99168499

2.05170576

2.10658026

2.15711897

2.20395521

0.03249
0.03269
0.04662

0.04628

0.05345

0.05312

0.05746

0.05718

0.06007

0.05985

0.06191

0.4177913013559897
0.6209113046899123

0.2689070447719729

0.7341266671891752
0.4461215299911067
0.8034402382691066
0.1992877299056662
0.5674306027472533
0.8488719610366557
0.3477879716116667
0.6535334790799030
0.8802308527184540
0.1585652886576400
0.4601498259228992
0.7166138606253078
0.9027709752917726
0.2848880010669259
0.5466676961746040
0.7640984545671450
0.9195087517942991
0.1317518400537555
0.3862684522940377
0.6144355426143385
0.8006822662356081
0.9322747830229179
0.2412235692922764
0.4684175059008267
0.6683666194633162
0.8294354799669058
0.9422316279551781
0.1127327065284049
0.3325418228947248
0.5356654831037281
0.7119103140476186
0.8524275899174107
0.9501460608151026

0.4306648
0.6363260
0.2765187
0.7485748
0.4568660
0.8161267
0.2040623
0.5790145
0.8598070
0.3551496
0.6649023
0.8896327
0.1618052
0.4687316
0.7273222
0.9108842
0.2901556
0.5556701
0.7739904
0.9265519
0.1340857
0.3927173
0.6234070
0.8097370
0.9384302
0.2451541
0.4754842
0.6770614
0.8376926
0.9476477
0.1144909
0.3375168
0.5429843
0.7202033
0.8599508
0.9549426




AMTop)

MTE) = M

T’n

T'n

opt

)

14

15

16

17

18

19

2.24759321

2.28844092

2.32683304

2.36304752

239731771

2.42984142

0.06173

0.06328

0.06313

0.06432

10.06420

0.06515

0.2091510118057353
0.4091565377641974
0.5912705457477183
0.7475281167521386
0.8710916063656573
0.9565402633332384
0.0985298474573020
0.2918015306737818
0.4738546882316757
0.6376896724307452
0.7770061889653626
0.8864437409774569
0.9617797380927199
0.1845990864374410
0.3629096640933456
0.5288572896841651
0.6767882780854777
0.8016617897222662
0.8992200402941425
0.9661264749901083
0.0875146934912087
0.2598842018797722
0.4243548709184729
0.5759276542381559
0.7099951678453442
0.8224812942273985
0.9099637674997672
0.9697722141026608
0.1652019161293088
0.3258963986012215
0.4776989334135101
0.6164674680899757
0.7384152664484192
0.8402138571728484
0.9190827139401264
0.9728598818330955
0.0787200614528085
0.2342214072823386
0.3839541516755896
0.5242304777869164
0.6515953324320913
0.7629113849148811
0.8554359734390852
0.9268876556810802

_| 0.9754977704558682

0.2121872
0.4147776
0.5986083
0.7553639
0.8779513
0.9608141
0.0999008
0.2957382
0.4798402
0.6449010
0.7843697
0.8927090
0.9656095
0.1870111
0.3674590
0.5350106
0.6837852
0.8085605
0.9049549
0.9695763
0.0886130
0.2630690
0.4293012
0.5821132
0.7167274
0.8289349
0.9152259
0.9728948
0.1671625
0.3296409
0.4828825
0.6225929
0.7448572
0.8462483
0.9239234
0.9756989
0.0796194
0.2368471
0.3880920
0.5295337
0.6575991
0.7690531
0.8610795
0.9313521
0.9780895




In table 2.1, we give T, T(}, and A, )\(T&)). Because T, T(p, are symmetrical, we only
give the interior positive coordinates, i.e., negative coordinates and points on the boundary

(70 = =1 and 7, = 1) and the center (7,2 = 0 for even degree) are not listed.

2.2 Interpolation in the triangle

Consider now the standard triangle S? = {(z,y) : £ > 0,y > 0,1—-z—y > 0}. (z,y, 1—z—y)
are called the barycentric coordinates for the triangle. We denote them as (b1, ba, b3). We
seek the set of interpolation points which minimize (2.4) written in the two dimensional
form. Analogous to the one dimensional case where we constrain the points 7g and 7, on
the boundary of I, we use the points constructed in section 2.1 as the interpolation points
on the sides of S2. We then find the points inside $? by minimizing (2.4) properly adjusted
to the two dimensional case. We have shown in [2] that there are many local minima. We
select the one which leads to the minimal A\(7") among 7™ with various symmetries. We
show that these points are the best points known today in the sense defined in section 2.1.

We give T(7, in table 2.2.

III The adaptive procedure

3.1 The one dimensional case

Let Q = [a,b] be partitioned into elements ¢ = [zgl), zél)], [ =1,..,m. We assume that the
partition has the usual properties, i.e., zg“) = zgl), z%l) = a, zém) =b. Let ] = (—1,1) be
the master element. A linear map ¢; maps I onto €.

Let f € C(R) be a continuous function on €, f; its constraint on e; and F(f), |¢] < 1be
the preimage of f; on I. Using the interpolation points 7™ on I, we construct a polynomial
P, (T™, F,£) of degree m; and its image py,(f,t),t € e. Let n = (ny,...,npy), then we
denote p,(f,t) the piecewise polynomial on ) such that p, = Pn,(f,1),Vt € . Since the
interpolation points contain the end points of the interval, p, is continuous.

Let

6Tll(f) = ”f _pm”el,oo (3].)

and
ealf) = max_en(f) = If = Palloe (32)

=l

Given the tolerance €, our aim is to comstruct p,(t) so that €,(f) < e. By definition,
this is equivalent to have €,,(f) < e. Hence our aim is to construct adaptively an a
posterior error estimator with the polynomial py,(f,t) and P, (T™, F;,£) so that a(Fy) =
|F — Po(T™, F})|l100 < €. To do that, we need to have an error indicator n(Py,, F1). For
n; > 2, we define:

M (Pay F) = | o [F(T) = Pu ("), (3.3)
P F)=, mex, ) = Pl (3.4)




Table 2.2: The Lebesgue constant and barycentric coordinates of the mean optimal set in
the triangle. Points with symmetry are listed only once. Other Points are obtained by
permuting the barycentric coordinates. ny,n3, ng are the number of points of singlet, three

fold symmetry and six fold symmetry.

n

n

n3

by

by

b3

2

3

—
wingd >~

2.1115

2.6920

3.3010

3.7910

4.3908

5.0893

o

10

15

21

28

36

45

0

1

1

0

0

1.0000000
0.5000000
1.0000000
0.7251957
0.3333333
1.0000000
0.8306024
0.5000000
0.2208880
1.0000000
0.8866427
0.6431761
0.1525171
0.4168658
1.0000000
0.9194021
0.7349105
0.5000000
0.3333333
0.1097139
0.3157892
1.0000000
0.9398927
0.7957614
0.6042138
0.0817370
0.4494208
0.2663399
0.2447528
1.0000000
0.9533797
0.8375919
0.6801403
0.5000000
0.0627331
0.2153606
0.3891297
0.3657423
0.1942206

0.0000000
0.5000000
0.0000000
0.2748043
0.3333333
0.0000000
0.1693976
0.5000000
0.2208880
0.0000000
0.1133573
0.3568239
0.1525171
0.4168658
0.0000000
0.0805979
0.2650895
0.5000000
0.3333333
0.1097139
0.5586077
0.0000000
0.0601073
0.2042386
0.3957862
0.0817370
0.4494208
0.2663399
0.6584392
0.0000000
0.0466203
0.1624081
0.3198597
0.5000000
0.0627331
0.2153606
0.3891297
0.5524728
0.7294168

0.0000000
0.0000000
0.0000000
0.0000000
0.3333333
0.0000000
0.0000000
0.0000000
0.5582239
0.0000000
0.0000000
0.0000000
0.6949657
0.1662683
0.0000000
0.0000000
0.0000000
0.0000000
0.3333333
0.7805723
0.1256031
0.0000000
0.0000000
0.0000000
0.0000000
0.8365261
0.1011584
0.4673202
0.0968080
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.8745338
0.5692789
0.2217406
0.0817849
0.0763626
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)
n A N np ng

g

by

by

bs

9 59181 35 1 3

10 7.081 66 0 4

11 83383 78 0 5

3

1.0000000
0.9626819
0.8672666
0.7361751
0.5815151
0.3333333
0.0493729
0.4658361
0.1769439
0.3020146
0.1575680
0.3261032
1.0000000
0.9693919
0.8889846
0.7782484
0.6451372
0.5000000
0.0397231
0.1477532
0.4210577
0.2859582
0.3962235
0.2531675
0.1304041
0.2760598
1.0000000
0.9743976
0.9054668
0.8104474
0.6950282
0.5665299
0.0325950
0.4754886
0.1252588
0.2469949
0.3752681
0.3404173
0.2152428
0.1097836
0.3649733
0.2363509

0.0000000
0.0373181
0.1327334
0.2638249
0.4184849
0.3333333
0.0493729
0.4658361
0.1769439
0.6309227
0.7808733
0.4887991
0.0000000
0.0306081
0.1110154
0.2217516
0.3548628
0.5000000
0.0397231
0.1477532
0.4210577
0.2859582
0.5463689
0.6909248
0.8190269
0.5678554
0.0000000
0.0256024
0.0945332
0.1895526
0.3049718
0.4334701
0.0325950
0.4754886
0.1252588
0.2469949
0.3752681
0.6107764
0.7374393
0.8480326
0.4997724
0.6303341

0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.3333333
0.9012542
0.0683277
0.6461122
0.0670627
0.0615587
0.1850977
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.9205538
0.7044935
0.1578846
0.4280837
0.0574076
0.0559077
0.0505691
0.1560848
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.9348099
0.0490228
0.7494824
0.5060102
0.2494638
0.0488062
0.0473178
0.0421838
0.1352543
0.1333150




n

A Nz n

n3

g

by

by

bs

12 10.082 91 1

13 12.046 105 O

4

6

7

8

1.0000000
0.9782397
0.9184891
0.8356932
0.7347400
0.6208376
0.5000000
0.3333333
0.0271978
0.1075744
0.4415257
0.2152525
0.4166350
0.2954879
0.1853001
0.0937098
0.3187835
0.2045479
0.3305135
1.0000000
0.9812954
0.9289266
0.8560408

1.0.7665724

0.6649507
0.5559156
0.0230602
0.4816638
0.0934032
0.1893266
0.4039822
0.2969227
0.3679120
0.2590310
0.1611020
0.0809091
0.3920816
0.2807129
0.1787576
0.2928111

0.0000000
0.0217603
0.0815109
0.1643068
0.2652600
0.3791624
0.5000000
0.3333333
0.0271978
0.1075744
0.4415257
0.2152525
0.5411712
0.6624810
0.7741774
0.8706643
0.5641899
0.6802371
0.4512984
0.0000000
0.0187046
0.0710734
0.1439592
0.2334276
0.3350493
0.4440844
0.0230602
0.4816638
0.0934032
0.1893266
0.4039822
0.2969227
0.5953680
0.7043884
0.8038486
0.8887075
0.5059948
0.6169627
0.7205294
0.5148749

0.0000000
0.0000000
0.0000000
0.0060000
0.0000000
0.0000000
0.0000000
0.3333333
0.9456044
0.7848512
0.1169486
0.5694951
0.0421938
0.0420312
0.0405225
0.0356259
0.1170266
0.1152150
0.2181880
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.0000000
0.9538797
0.0366724
0.8131936
0.6213469
0.1920355
0.4061545
0.0367200
0.0365805
0.0350494
0.0303834
0.1019235
0.1023245
0.1007129
0.1923141




For n; = 2,
nll(Pnr—’?’ Fl) = 7]12(]3,”:2, Fl) = ]nl?*}%]Fl(Tf) - Pm(Tf)l (3'5)

Obviously, Bt < 75 < ||Fy = Po,(T™, F)|l100 = & We recommend using 7} since it is
much more effective than 7} especially for high degree interpolation. The idea behind the
proposed form of the error indicator is the following: If the interpolation error in element
e; is too large, we increase the degree of the polynomial. Since in most cases, getting Fi(7)
is expensive(e.g., in solid modeling, F; is obtained using interrogation operators of the solid
modeler),we use only the previously computed values F(7;" _1) in the adaptive process. For
degree 2, (3.3) and (3.4) are not defined, we use degree 3 points as in the error indicator.
This increases a little computation time. Since the interpolation degree 3 is low, this is
not a serious impediment. By this procedure, which is parallel, we construct the adaptive
interpolation with n; depending on the given tolerance and the function f.

Note the optimal interpolation points used for interpolation satisfy —1 < 71" < 71" 1<
<<l < T,?,’_'Ql < m#_; < 1. Therefore, the error indicator 7' and 7 never sample
points in intervals (-1,7") and (7,_;,1). This can remedied by introducing new estimators

it (Puy i) = max [F(r}""") = P (7)), (3.6)
ﬁIQ(Pm’FI) :max(ﬁll(PnnFl)?WIQ(an’E))' (3-7)

However, Since interpolation points are denser near the end points than near the center,
the intervals (-1,77") and (7,/_;,1) are quite small (compared to the average distance be-
tween neighboring interpolation points). In most cases, the results of using n?(Py,, F;) and
?(Py,, Fy) are quite similar. However, 7j(P,,, F1) has the disadvantage of using higher de-
gree information not computed previously in the adaptive process. When getting F(7) is
not expensive, it may be advantagious to use 77(P,,, )

Example 3.1. Let Q = [0,8], I = (0,2),l> = (2,4),l3 = (4,6),l4 = (6,8). Let f =
m. In table 3.1, we report the values ¢;,n},n? as a function of the polynomial degree
n)

We see that both error indicators are quite reliable. The effective indices(the ratio of the
error indicator 7; and the actual error ¢) are near one. The second error indicator 7} is more
effective than n. Although the effective indices are not far from one, we suspect they are
not asymptotically exact, i.e., it does not approach to one as interpolation degree increases
to infinity.

We also see that uniform degree interpolation is not economical. In table 3.2, we give
the optimal degree distribution for various tolerance € using 7? as the error estimator.

Example 3.1 is typical and similar results are obtained for other test cases.

3.2 The two dimensional case

Let Q C R? be a closed polygonal domain partitioned into triangular elements e; in the
standard way. Let Ef,k = 1,2, 3 be the edges of ¢; and let € be the tolerance. Further let D
be the standard triangle and ¢; maps D onto ¢;. As before, let f € C(f2) be a continuous
function on (, f; its restriction on ¢; and Fj its preimage on D. In exactly the same way as
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Table 3.1: Errors and error indicators for example 3.1.

€1

m

/e

n

/€

€2

7

3/ €2 s

75 /€2

0.27E-04
0.17E-05
0.10E-06
0.61E-08
0.36E-09
0.21E-10
0.12E-11
0.71E-13

0.24E-04
0.15E-05
0.88E-07
0.56E-08
0.33E-09
0.19E-10
0.11E-11
0.64E-13

0.87
0.92
0.86
0.91
0.91
0.91
0.92
0.91

0.24E-04
0.15E-05
0.88E-07
0.56E-08
0.35E-09
0.21E-10
0.12E-11
0.68E-13

0.87
0.92
0.86
0.91
0.97
0.98
0.94
0.96

0.95E-04
0.74E-05
0.57E-06
0.43E-07
0.32E-08
0.24E-09
0.17E-10
0.12E-11

0.82E-04
0.66E-05
0.48E-06
0.38E-07
0.29E-08
0.21E-09
0.15E-10
0.11E-11

0.87 0.82E-04
0.90 0.66E-05
0.85 0.48E-06
0.89 0.38E-07
0.89 0.31E-08
0.88 0.23E-09
0.90 0.16E-10
0.89 0.11E-11

0.87
0.90
0.85
0.89
0.96
0.97
0.94
0.96

€3

73

13/€3

s

77%/63

€4

T4

N4/ €4 N

13/ €4

0.49E-03
0.52E-04
0.54E-05
0.54E-06
0.52E-07
0.49E-08
0.43E-09
0.37E-10

O 00 IO UK WINIS|W O ~IO Ui N3

0.42E-03
0.45E-04
0.44E-05
0.45E-06
0.45E-07
0.41E-08
0.38E-09
0.32E-10

0.86
0.86
0.83
0.84
0.86
0.85
0.88
0.87

0.42E-03
0.45E-04
0.44E-05
0.45E-06
0.49E-07
0.47E-08
0.41E-09
0.36E-10

0.86
0.86
0.83
0.84
0.94
0.97
0.93
0.96

0.50E-02
0.75E-03
0.10E-03
0.11E-04
0.97E-06
0.48E-07
0.26E-07
0.75E-08

0.42E-02
0.60E-03
0.82E-04
0.99E-05
0.93E-06
0.41E-07
0.15E-07
0.51E-08

0.84 0.42E-02
0.80 0.60E-03
0.81 0.82E-04
0.87 0.99E-05
0.96 0.96E-06
0.84 0.48E-07
0.60 0.22E-07
0.68 0.67E-08

0.84
0.80
0.81
0.87
0.99
0.99
0.84
0.89

Table 3.2: Adaptive interpolation degrees and errors for various tolerances for example 3.1.

€ €n ni €1 No €9 ng €3 7\ €4
1.0E-3 | 750E-4 | 2 271E-5| 2 946E-5| 2 4.92E-4| 3 7.50E-4
1.0E-4 | 1.00E-4{ 2 2.71E-5| 2 946E-5| 3 5.22E-5| 3 1.00E-4
10E-5|1.15E-5| 3 166E6| 3 740E6| 4 5.38E-6| 5 1.15E-5
1.0E-6 | 9.74E-7 | 4 1.02E-7{ 4 b5.71E-7| 5 b5.37E-7| 6 9.74E-7
1.0E-7 | 1.02E-7 | 4 1.02E-7| 5 4.33E-8| 6 5.22E-8| 7 4.84E-8
1.0E-8 | 759E-9 | 5 6.12E-9| 6 3.23E-9| 7 4.88E-9| 9 7.59E-9
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in the one dimensional case, from the error indicator ¥ (7751),77(1)) defined analogous to (3.4),
we construct a polynomial P, (7™, F}) such that e(F;) = ||F; — P, (T™, F1)||e, o =) < e
By pn,, we denote the image of P,, on ¢; and by p,(f,t), we denote the piecewise polynomial
function on {2 such that its restriction on € is py,.

In contrast to the one dimensional case, if the polynomial degrees for two elements sharing
a common edge are different, p,(f,t) is no longer continuous on the common edge. We need
to modify p,, in the adaptive procedure to construct a new piecewise polynomial p, so that
on the common edge of the two elements p,, is continuous. N

Note that during the adaptive process, the interpolation degree n; for each element is
given (starting from say, n; = 2 for all elements). We observe that on the common edge
E = E’cl = , both PF PE are within tolerance € of the function F. Therefore we

ny, ?

use polynomlal PfE where ng = min(n;,,n;,) to approximate F on the common edge E.
After interpolating the function with degree ng on every edge, we interpolate the function in
each element ¢; by the following procedure. For a node on edge F, we replace the function
value F at that node with the value of the edge interpolated function P,f’;?. For a node in
the interior, we use the original function value F'. By this procedure, which is parallel, we
obtain a continuous polynomial p, of degree n; on ;. We have ||f — B, [[a,.0 < €(1+ MT™))
where 7% = maxn,. The error |[f — D lle;n can be estimated by the error indicator. If
\lf — ﬁmlie,’oo < € is not satisfied for some element ¢;, we increase the approximation degree
n; and continue the adaptive procedure.

Remark. ||f —B,lla,0 < €(1 + MT7™)) is an over estimate. Actually, let €, = maxep,
where € is the error on the edge E, €; < €. then ||f —B,lla,00 < €+ ATT)e1. € is usually
much samller than e because the Lebesgue function on the triangle edges is usually much
smaller than the Lebesgue constant. The bound can further be made sharper. Therefore,
| f — Pallo,co < €is more likely to be satisfied.

Example 3.2. Let Q = [0,4] x [0,4]. Q is partitioned into 8 triangles e; = {(z,y) : 2 >
0,y>0,z+y<2},e2={(z,y): 2 <2,y<0,24+y>2}, es=1¢€+(2,0), 4= e2+(2,0),
es = €1 + (O 2) €g = €2 + (0 2) er=e1+ (2 2) eg = ex + (2 2) Let f = ((z+1)2+1)1((y+1)2+1)
In table 3.3 we show the error and error indicators for f — p,,. For various tolerance ¢, the
sequence of the adaptive approximation degree is given in table 3.4. We also report the error
and the indicators for the adaptively determined P, using n?.

Note the error indicators in the triangle are usually not as effective as in the one dimen-
sional case.

Remark. Interpolation in domains partitioned into curvilinear elements is done in the
same way as in the finite element method using pullback polynomial on the standard element.

Remark. Often we have to impose an upper bound on the degree of used polynomials. If
then the accuracy is not achieved, the mesh has to be refined in those elements where the

desired accuracy is not achieved.
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Table 3.3: Errors and error indicators for example 3.2.

€1

m

m /el

n;

/€

€2

5

T/ €2

5

15/ €

0.97E-02
0.12E-02
0.25E-03
0.13E-03
0.41E-04
0.96E-05
0.20E-05
0.27E-06

0.82E-02
0.12E-02
0.13E-03
0.53E-04
0.21E-04
0.55E-05
0.12E-05
0.17E-06

0.84
1.00
0.52
0.40
0.51
0.58
0.58
0.64

0.82E-02
0.12E-02
0.13E-03
0.53E-04
0.25E-04
0.81E-05
0.18E-05
0.26E-06

0.84
1.00
0.52
0.40
0.62
0.84
0.87
0.94

0.19E-02
0.27E-03
0.33E-04
0.19E-04
0.77E-05
0.23E-05
0.52E-06
0.85E-07

0.16E-02
0.24E-03
0.24E-04
0.18E-04
0.52E-05
0.16E-05
0.34E-06
0.49E-07

0.88
0.90
0.74
0.95
0.68
0.69
0.65
0.57

0.16E-02
0.24E-03
0.24E-04
0.18E-04
0.74E-05
0.20E-05
0.45E-06
0.78E-07

0.88
0.90
0.74
0.95
0.96
0.89
0.85
0.92

€3

m

77%,/63

7

n%/fs

€4

N3

14/ €4

i

11/ €1

0.18E-02
0.24E-03
0.31E-04
0.16E-04
0.57E-05
0.15E-05
0.34E-06
0.46E-07

0.16E-02
0.24E-03
0.12E-04
0.10E-04
0.42E-05
0.11E-05
0.23E-06
0.35E-07

0.90
1.00
0.39
0.62
0.73
0.72
0.70
0.75

0.16E-02
0.24E-03
0.12E-04
0.10E-04
0.51E-05
0.13E-05
0.23E-06
0.36E-07

0.90
1.00
0.39
0.62
0.88
0.81
0.70
0.79

0.70E-03
0.92E-04
0.12E-04
0.50E-05
0.20E-05
0.65E-06
0.17E-06
0.28E-07

0.63E-03
0.92E-04
0.85E-05
0.39E-05
0.16E-05
0.42E-06
0.90E-07
0.13E-07

0.90
1.00
0.72
0.79
0.83
0.65
0.54
0.47

0.63E-03
0.92E-04
0.85E-05
0.39E-05
0.19E-05
0.49E-06
0.12E-06
0.20E-07

0.90
1.00.
0.72
0.79
0.99
0.75
0.69
0.71

€5

s

7751>/€5

3

15/ €s

€6

e

7)%/66

%

1/ €6

0.18E-02
0.24E-03
0.31E-04
0.16E-04
0.57E-05
0.15E-05
0.34E-06
0.46E-07

0.16E-02
0.24E-03
0.12E-04
0.10E-04
0.42E-05
0.11E-05
0.23E-06
0.35E-07

0.90
1.00
0.39
0.62
0.73
0.72
0.70
0.75

0.16E-02
0.24E-03
0.12E-04
0.10E-04
0.51E-05
0.13E-05
0.23E-06
0.36E-07

0.90
1.00
0.39
0.62
0.88
0.81
0.70
0.79

0.70E-03
0.92E-04
0.12E-04
0.50E-05
0.20E-05
0.65E-06
0.17E-06
0.28E-07

0.63E-03
0.92E-04
0.85E-05
0.39E-05
0.16E-05
0.42E-06
0.90E-07
0.13E-07

0.90
1.00
0.72
0.79
0.83
0.65
0.54
0.47

0.63E-03
0.92E-04
0.85E-05
0.39E-05
0.19E-05
0.49E-06
0.12E-06
0.20E-07

0.90
1.00
0.72
0.79
0.99
0.75
0.69
0.71

€7

n

77%/67

n;

/€

€8

%

18/ €s

s

15/ €8

OO0~ U R WS | ©o IO WNS|[OCo I g WSl T ot w3

0.18E-03
0.24E-04
0.30E-05
0.36E-06
0.39E-07
0.45E-08
0.45E-09
0.33E-10

0.13E-03
0.17E-04
0.21E-05
0.26E-06
0.29E-07
0.29E-08
0.27E-09
0.19E-10

0.71
0.72
0.68
0.72
0.73
0.65
0.59
0.59

0.13E-03
0.17E-04
0.21E-05
0.26E-06
0.30E-07
0.37E-08
0.36E-09
0.30E-10

0.71
0.72
0.68
0.72
0.75
0.82
0.81
0.91

0.58E-04
0.78E-05
0.99E-06
0.14E-06
0.18E-07
0.21E-08
0.21E-09
0.17E-10

0.49E-04
0.66E-05
0.79E-06
0.10E-06
0.11E-07
0.12E-08
0.12E-09
0.87E-11

0.84
0.85
0.80
0.72
0.62
0.56
0.56
0.52

0.49E-04
0.66E-05
0.79E-06
0.11E-06
0.16E-07
0.19E-08
0.18E-09
0.15E-10

0.84
0.85
0.80
0.75
0.91
0.89
0.84
0.92
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Table 3.4: Adaptive interpolation degrees and errors for various tolerances for example 3.2.
€ is the given tolerance. ¢, is the error in 2.

I € ny € no € n3 €3 n4 €4
1.0E-3 | 4 0.25E-03] 3 0.26E-03| 3 0.24E-03| 2 0.70E-03
1.0E-4 | 5 0.13E-03| 4 041E-04| 4 0.31E-04{ 3 0.92E-04
1.0E-5 | 7 096E-05| 6 O0.78E-05| 6 0.57E-05| 4 1.08E-05
10E-6 [ 9 O027E-06] 8 0.52E-06| 8 0.34E-06| 7 0.66E-06

€n €1 No €9 ng €3 ({7} €4
0.70E-3| 3 0.24E-03{ 2 O0.70E-03{ 2 0.18E-03| 2 0.58E-04
092E-41 4 031E-04| 3 092E-04 | 3 0.24E-04| 2 0.59E-04
1.08E-5| 6 0.57E-05| 4 1.08E-05| 4 0.30E-05]| 3 0.78E-05
0.66E-6 | 8 0.34E-06| 7 0.66E-06| 5 0.36E-06| 4 1.01E-06
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